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RINGO: Real-time Locomotion Planning via a
Guiding Trajectory for Aerial Manipulators

Zhaopeng Zhang, Shizhen Wu, Chenfeng Guo, Yongchun Fang, Jianda Han, Xiao Liang

Abstract—Motion planning for aerial manipulators in con-
strained environments has typically been limited to rely on
pre-built maps or simplified to that of multi-rotors, leading to
poor adaptability or overly conservative trajectories. This paper
presents RINGO: Real-time Locomotion Planning via a Guiding
Trajectory, a planning method that tackles the locomotion prob-
lem for aerial manipulators in constrained environments without
relying on pre-built maps. A simplified obstacle-avoidance model
is established, and its feasibility is theoretically proven. An initial
end-effector trajectory is generated via a quadratic Bézier curve
and then refined into a B-spline. A gradient-based optimization
problem is formulated that integrates smoothness, workspace-
feasibility, yaw-rate, and obstacle-avoidance costs. Leveraging
the signed distance function (SDF), soft-max technique and the
convex hull property of B-spline curves, the trajectory remains
theoretically feasible. This paper presents the first work that
enables real-time motion planning of aerial manipulators in
constrained environments without relying on pre-built maps. The
simulation and experimental results show the effectiveness of the
proposed method.

Index Terms—Aerial manipulator, motion planning, trajectory
optimization.

I. INTRODUCTION

MULTI-ROTOR aerial vehicles, commonly known as
drones, have been widely studied in recent years for

diverse applications, including autonomous landing [1], [2]
and payload delivery [3]–[5]. Meanwhile, robotic manipulators
have attracted extensive attention over the past decades owing
to their wide applicability in industrial and service domains.
Representative applications range from grasping [6] to com-
plex tasks [7].

Aerial manipulators, typically consisting of a multi-rotor
and a robotic arm, integrate the strengths of both compo-
nents: the robotic arm provides the multi-rotor with manip-
ulation capabilities, while the multi-rotor overcomes the fixed
workspace limitation of the robotic arm, enhancing the aerial
manipulator’s flexibility for large-scale movements. In recent
years, aerial manipulators have attracted considerable attention
for robust control [8]–[10], contact-based inspection [11] and
various practical applications [12], [13].

Motion planning is a fundamental problem in robotics,
aiming to generate collision-free and dynamically feasible
trajectories for robotic systems. Although some studies have
addressed the motion planning problem for aerial manipula-
tors, there are still two key issues that need to be addressed.
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(a) snapshot of the real-world experi-
ment

(b) visualization in RViz

Fig. 1: The aerial manipulator successfully passes through a
ring-shaped obstacle.

Firstly, several motion planning methods for aerial manipula-
tors are typically conducted relying on pre-built maps [14]–
[20]. However, a critical limitation is that the reliance on
pre-built maps significantly restricts the adaptability of aerial
manipulators to new environments, while motion planning in
constrained spaces further presents significant challenges in
terms of computational complexity and real-time performance.
Secondly, the motion planning for an aerial manipulator in
constrained environments is, in some cases, simplified to that
of a multi-rotor [16]. However, this approach, which encloses
the entire system within a large bounding ball, tends to yield
overly conservative trajectories. While minimizing the ball’s
radius by retracting the robotic arm can mitigate this issue, it
introduces a periodic planning approach, potentially increasing
the time required for the arm to reach its goal state [21].

To address the above issues, we propose a novel motion
planning method, called Real-tIme Locomotion PlanNing via
a Guiding trajectOry (RINGO) for aerial manipulators in
constrained environments without relying on pre-built maps.
Our proposed method employs a leader-follower-inspired mo-
tion planning framework for aerial manipulators. Based on a
previously planned and parameterized B-spline trajectory of
the multi-rotor, we then plan the trajectory for the robotic
arm. We first establish an obstacle-avoidance model with a
simplified treatment of the tilt motion, whose feasibility is
theoretically proven. Then, the initial trajectory for the end-
effector is generated by a quadratic Bézier curve from the
start position to the goal position and refined into a B-
spline curve. Finally, a gradient-based optimization problem is
formulated by jointly incorporating the workspace-feasibility,
smoothness, yaw-rate, and obstacle-avoidance costs, ensur-
ing that the refined end-effector trajectory remains smooth
and geometrically valid. Additionally, workspace feasibility
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is established by constructing a cost function using the soft-
max technique and the approximated signed distance functions
(SDFs), combined with the convex hull property of the B-
spline curve that guarantees the robotic arm motion remains
geometrically feasible.

Compared with the existing works, our proposed method
is able to generate the trajectory for the aerial manipulator
in real-time without reducing the system to a multi-rotor-only
model. The simulation and experimental results show that the
proposed method can generate a collision-free and workspace-
compatible trajectory for the aerial manipulator in real time.
We will release the code as open-source for the benefit of the
robotics community. The main contributions of this paper are
listed as follows:

1) Unlike most existing works [14]–[20] that plan trajecto-
ries for aerial manipulators in constrained environments
relying on pre-built maps, this paper presents the first
planning algorithm capable of navigation in constrained
environments without pre-built maps, while ensuring the
high real-time performance required for locomotion tasks.

2) Workspace-feasibility is ensured by constructing a cost
function with the soft-max technique and approximated
SDFs, together with the convex hull property of the
B-spline curve that guarantees the robotic arm motion
satisfies the geometric feasibility.

3) An obstacle-avoidance model is designed with a sim-
plified treatment of the tilt motion, whose feasibility is
theoretically established. This model represents a trade-
off between real-time performance and accuracy.

II. RELATED WORK

A. Motion Planning for Multi-rotors
By invoking the differential flatness property [22], the

motion planning problem is simplified to consider only the
position and the yaw angle of the multi-rotor [23]. In cases
where a 360-degree LiDAR, rather than a front-view camera,
is mounted on the multi-rotor [24], the yaw angle of the multi-
rotor can be disregarded. Consequently, the motion planning
problem is further simplified to find a collision-free and
dynamically feasible trajectory for a point in R3, with obstacle
avoidance ensured by inflating the obstacles. Alternatively,
the multi-rotor can be enclosed within an ellipsoid [25] or
a convex polyhedron [26] to reduce the conservatism of the
trajectory by formulating the problem in SE(3). Most existing
studies on motion planning can be divided into two main
stages: path search and trajectory optimization. In [27], the
jump point search algorithm is employed to determine the
initial waypoints for the multi-rotor, and the trajectory is
optimized by parameterizing it as a Bézier curve.

Compared with multi-rotors, aerial manipulators exhibit
substantially higher degrees of freedom owing to the inte-
gration of robotic arms, thereby making the motion planning
problem more complex and challenging.

B. Motion Planning for Aerial Manipulators
Motion planning for aerial manipulators involves generating

safe and feasible trajectories that account for both the multi-
rotor and the robotic arm. Some studies adopt decoupled

motion planning frameworks, in which the multi-rotor and the
manipulator are planned in separate stages [21]. For instance,
Cao et al. [16] propose a two-stage decoupled method for
pick-and-place tasks, where the aerial manipulator is enclosed
within a large ball to simplify collision avoidance. Zhang
et al. [28] drive the multi-rotor to a target area and then
determines the trajectory for the robotic arm to grasp a target
object from a moving platform.

More recent efforts have incorporated whole-body planning
strategies. Kim et al. [14] integrate informed-RRT* with the
local planner in [15] to generate collision-free trajectories
in constrained environments. Alvaro et al. [17] consider the
kinematic model of the aerial robotic system with two arms
for long-reach manipulation and use the RRT*-based method
to plan the trajectory for the multi-rotor and the robotic arm
in a known environment. Deng et al. [18] propose a dynamic
ellipsoidal approximation method that adapts to varying ma-
nipulator configurations for an aerial manipulator with a delta
arm. However, this method may not generalize well to serial-
link arms. Zhang et al. [19] formulated a coupled motion
planning method by enclosing the aerial manipulator within
a convex polyhedron and optimizing its trajectory with pre-
built maps. Lee et al. [20] present a whole-body planning and
control framework for omnidirectional aerial manipulators,
utilizing multiple ellipsoids to enclose the aerial manipulator
in known environments.

While certain works develop collision-avoidance models
that capture the system state with higher accuracy, this
increased fidelity often comes at the expense of real-time
performance, thus limiting their applicability in constrained
environments without pre-built maps. Meanwhile, some works
[28]–[31] explore task-constrained planning without address-
ing collision avoidance issues.

III. PRELIMINARY

A. Aerial Manipulator

In this paper, two coordinate frames are considered: {I} =
{i1, i2, i3} denotes the inertial frame and {B} = {b1, b2, b3}
denotes the body-fixed frame, as illustrated in Fig. 2.

b1

b2

b3

{B}

actual robotic arm

virtual robotic arm

α
i3

i1

i2
i3

{I}

xb

Fig. 2: Aerial Manipulators. The light-colored arm represents
the virtual robotic arm without tilt motion, whereas the dark-
colored arm corresponds to the actual one.

The aerial manipulator combines a multi-rotor and a robotic
arm, as shown in Fig. 2. The state variables of the aerial
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manipulator are defined as follows:

q =


xb

R

θ

 ∈ R3 × SO(3)×Θ,

where xb ∈ R3 is the multi-rotor’s position with respect
to {I}, R ∈ SO(3) denotes the rotation matrix from {B}
to {I}, and α is the tilt angle between i3 and b3. θ =
{θ1, θ2, . . . , θn} ∈ Θ denotes the joint angles of the robotic
arm, where Θ = Θ1 × Θ2 × · · · × Θn. θi (i = 1, 2, . . . , n)
represents the angle of the i-th joint, and Θi ⊂ R specifies
the allowable range of θi. xe,act ∈ R3 is the position of the
end-effector with respect to the inertial frame {I}, which can
be expressed as:

xe,act = xb +R(b3, ψ)
bxe(θ), (1)

where ψ ∈ S1 represents the yaw angle of the multi-rotor and
bxe(θ) is the position of the end-effector with respect to {B}.
The rotation matrix R(b3, ψ) can be divided into two parts,
including the tilt motion part H2(b3) ∈ SO(3) and the yaw
motion part H1(ψ) ∈ SO(3), as follows [32]:

R(b3, ψ) = H2(b3)H1(ψ). (2)

If the tilt motion is small enough to be neglected, the rotation
matrix R(b3, ψ) is written as

R(b3, ψ) ≈ R(i3, ψ) = H2(i3)H1(ψ) = H1(ψ). (3)

The virtual position of the end-effector can be derived as

xe,vir = xb +H1(ψ)
bxe(θ) = xb + xve(θ

+), (4)

where xve(θ
+) = H1(ψ)

bxe(θ) and θ+ = {ψ,θ} ∈ S1 ×Θ.
For the purpose of notational convenience, the virtual end-
effector position is denoted by xe under the simplified kine-
matics.

B. B-spline Curve

t
Ni0

Fig. 3: Xi, Ei, and Vi belong to three different sets of control
points, while the grey curves depict B-spline basis functions.

An s-order B-spline curve is determined by a set of N + 1
control points X = {X0,X1, . . . ,XN} and a knot vector T =
[t0, t1, . . . , tM ]⊤ ∈ RM+1

+ , where Xi ∈ R3, ti ∈ R+ and
M = N + s+ 1.

Property 1. If two B-spline curves with the same order share
the same knot vector, the linear combination of them is still a
B-spline curve with the same order.

It is assumed that the trajectory of the multi-rotor’s position
xb(t) is a B-spline curve, determined by one set of control

points X = {X0,X1, . . . ,XN}, and the trajectory of the virtual
end-effector’s position xe(t) is also a B-spline curve, deter-
mined by another set of control points E = {E0, E1, . . . , EN}.
The two B-spline curves share the same time knot vector T
and are formulated as follows:

xb(t) =

N∑
i=0

Bi(t)Xi, xe(t) =

N∑
i=0

Bi(t)Ei,

where Bi(t) is the B-spline basis function of order s. Then,
xve(t) in (4) can be derived as

xve(t) = xe(t)− xb(t)

=

N∑
i=0

Bi(t)(Ei −Xi) =

N∑
i=0

Bi(t)Vi, (5)

where it can be concluded that the trajectory of xve(t) is also a
B-spline curve with the control points V = {V0,V1, . . . ,VN}
and share the same time knots vector T with xb(t) and xe(t),
as shown in Fig. 3.

IV. METHOD OVERVIEW

A. Collision Model

To ensure real-time efficiency and avoid conservatism, the
collision model of the aerial manipulator is represented by
a collision model O = {Ob,Oe}, as depicted in Fig. 2. In
this model, Ob(xb, rb) = {x ∈ R3 | ∥x − xb∥ ≤ rb} and
Oe(xe, re) = {x ∈ R3 | ∥x − xe∥ ≤ re} are two balls
centered at the positions of the multi-rotor xb and the virtual
end-effector xe, with radii rb and re, respectively.

In this model, Ob always encloses the multi-rotor as well
as part of the robotic arm, irrespective of the system motion,
and the corresponding set of mass points is denoted by Pb.
The remaining mass points of the system are denoted by Pe.
For any point p ∈ Pe, its position in the body frame {B} is
represented as bx(p), and the corresponding virtual and actual
positions in the inertial frame {I} are denoted by xvir(p) and
xact(p), respectively.

Theorem 1. By properly choosing the radius re and restricting
α within the bound αmax, i.e. ∥α∥ ≤ αmax, it holds that
xact(p) ∈ Oe,∀p ∈ Pe.

Proof. For any point p ∈ Pe, the corresponding virtual and
actual positions in the inertial frame {I} are

xvir(p) = xb +H1(ψ)
bx(p), (6a)

xact(p) = xb +H2(b3)H1(ψ)
bx(p), (6b)

and one can conclude that

xact(p) = xvir(p) + (H2(b3)− I)H1(ψ)
bx(p), (7)

in which I is the identity matrix. What the Theorem 1 state is
that for any point p ∈ Pe, the distance ∥xact(p)−xe∥ between
the actual position of point p and the center xe can be bounded
by a constant radius.
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Plan the trajectory for
the robotic arm

• Obstacle-avoidance • Workspace-feasibility

convex space

trajectory of xve

Trajectory
Optimization

• Smoothness
• Yaw-rate

Initial Trajectory

start

goal

Prior Information

Guiding trajectoryESDF map

B-spline
Parameterization

Theorem 1.Theorem 2.

Fig. 4: RINGO framework. The ESDP map and a pre-planned multi-rotor trajectory, parameterized as a B-spline curve with
a set of control points X and a knot vector T , serve as prior information. An initial end-effector trajectory is generated by
a Bézier curve and refined through optimization, where workspace-feasibility, smoothness, and yaw-rate costs depends on V ,
whereas obstacle-avoidance relies on E .

By the triangle inequality,

∥xact(p)− xe∥
=
∥∥xvir(p) + (H2(b3)− I)H1(ψ)

bx(p)− xe

∥∥
≤∥xvir(p)− xe∥︸ ︷︷ ︸

virtual geometry

+ ∥(H2(b3)− I)H1(ψ)
bx(p)∥︸ ︷︷ ︸

tilt motion deviation

. (8)

Define r = supp∈Pe
∥H1(ψ)(

bx(p) − bxe)∥ ∈ L∞, then by
combining (4) and (6a), we can conclude that

∥xvir(p)− xe∥ = ∥H1(ψ)(
bx(p)− bxe)∥ ≤ r. (9)

Given the fact that

∥(H2(b3)− I)H1(ψ)∥ ≤ ∥(H2(b3)− I)∥∥H1(ψ)∥

= 2 sin
α

2
· 1 ≤ 2 sin

αmax

2
, (10)

and define ρ = supp∈Pe
∥bx(p)∥ ∈ L∞, hence

∥(H2(b3)−I)H1(ψ)x(p)∥ ≤ ∥(H2(b3)−I)H1(ψ)∥∥bx(p)∥

≤ 2 sin
αmax

2
∥bx(p)∥

≤ 2ρ sin
αmax

2
. (11)

If the radius is chosen as

re ≥ r + 2ρ sin
αmax

2
, (12)

by combining (8), (9), and (11), the fact that α ≤ αmax, it can
be concluded that

∥xact(p)− xe∥
≤ ∥xvir(p)− xe∥+ ∥(H2(b3)− I)H1(ψ)

bx(p)∥

≤ r + 2ρ sin
αmax

2
≤ re. (13)

Hence for all points in the set Pe will be enclosed by the ball
Oe centered at the position of the virtual end-effector xe with
the radius re, i.e., ∀p ∈ Pe,xact(p) ∈ Oe.

According to the above analysis, the radius re can be
decomposed into two components. The first term, r, is solely

determined by the geometry of the robotic arm and corre-
sponds to the minimum admissible radius in the absence of
tilt motion. The second term, 2ρ sin(αmax/2), reflects the
additional margin introduced by the arm’s motion and the
maximum allowable tilt angle. When αmax is small, this
contribution becomes negligible, thereby enabling a more
compact and less conservative collision model.

B. Problem Statement

To complete locomotion tasks in constrained environments
without pre-built maps, aerial manipulators rely exclusively on
onboard sensors for environment mapping and online planning
to produce smooth and collision-free trajectories, thereby
imposing strict real-time requirements on the algorithm.

With the analysis in Section IV-A, we plan the virtual end-
effector trajectory xe(t) jointly with the multi-rotor trajectory
xb(t). From the formulation in (4), we can derive the trajectory
of xve(t). It can be converted, via inverse kinematics, into the
generalized joint trajectory θ+(t). Executing θ+(t) yields the
actual end-effector trajectory xe,act(t) through the kinemat-
ics (1), which remains collision-free according to Theorem 1.

The problem that this paper aims to address can be defined
as: Given the start state xb(0) = xb,0 and xe(0) = xe,0 with
their time derivatives, and the goal state xb(T ) = xb,d and
xe(T ) = xe,d with zero time derivatives, the problem is to
plan a collision-free trajectory for the aerial manipulator in
real time within constrained environments.

C. Main Method

As shown in Fig. 4, the multi-rotor trajectory is firstly
planned as a guiding trajectory and parameterized as a B-
spline with control points X and a knot vector T . An initial
end-effector trajectory for xve(t) is generated as a quadratic
Bézier curve, and parameterized as a B-spline curve with
control points V , as detailed in Section IV-D. Combining
xb(t) and xve(t) yields an initial trajectory for xe(t), which
is represented as a B-spline curve sharing the same time
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knot vector T and using control points E . Finally, we refine
xe(t) and xve(t) by minimizing a cost comprising obstacle-
avoidance, workspace-compatible, and smoothness terms, as
detailed in Section V.

D. Initial Trajectory Generation

As shown in Fig. 4, the initial trajectory for the virtual
end-effector xe(t) is constructed by combining a pre-obtained
trajectory xb(t) with a quadratic Bézier curve for xve(t). The
Bézier curve is defined by xve(0), P , and xve(T ), where the
intermediate point P is defined as

P =
1

2
λ (xve(0) + xve(T )) , (14)

with λ = log
(
1
2

∣∣arccos (x⊤
ve(0)xve(T )

)
+ 1

∣∣+ 1
)
. This for-

mulation effectively pushes the midpoint of the Bézier curve
away from the straight line between the start and goal. A larger
angle between the start and goal vectors yields a greater λ,
which enhances smoothness in the joint space.

The resulting initial trajectory for xe(t) is obtained by com-
bining xb(t) with the quadratic Bézier curve of xve(t). This
trajectory is subsequently refined and represented as a B-spline
curve parameterized with control points E = {E0, E1, . . . , EN}
and the knot vector T = [t0, t1, . . . , tM ]⊤.

V. TRAJECTORY OPTIMIZATION

Since obstacle avoidance is not explicitly addressed during
the initial trajectory generation, the problem is subsequently
cast as a trajectory optimization formulation:

min
E
f = λwfw + λsfs + λyfy + λdfd, (15)

where f denotes the overall cost. fw, fs, fy , and fd correspond
to the workspace-feasibility cost, smoothness cost, yaw-rate
cost, and obstacle-avoidance cost, respectively. The scalar
coefficients λs, λw, λy , and λd serve as the corresponding
weighting factors.

In the optimization problem (15), the decision variables are
the control points E = {E0, E1, . . . , EN}, which define the
B-spline curve of the virtual end-effector trajectory xe(t) in
the inertial frame {I}. For notational convenience, another
set of control points V is occasionally introduced, with the
relationship defined in (5), where X denotes the control points
associated with the multi-rotor trajectory. In the optimization
formulation, X is treated as a fixed constant, while E (and
equivalently V) serve as the optimization variables.

A. Workspace-feasibility Cost

In trajectory planning, it is essential to preserve a reasonable
spatial relationship between xe(t) and xb(t). Otherwise, the
end-effector may deviate excessively from the multi-rotor,
resulting in physically infeasible motions. To prevent such
cases, a workspace-feasibility cost is introduced to penalize
large deviations, thereby constraining xve(t) to remain within
a bounded region relative to the multi-rotor. The auxiliary
variable xve(t) derived in (4) represents the virtual end-
effector position originally expressed in {B} but transformed

zd rd

rmax

rmin

i3
{I} i1

r
Workspace

(a) workspace feasibility illustration

-rmin-rmax

zd
fd

Fl

r
fd

rmax

rd

Fo

(b) approximated SDFs

Vi Vi,z

Fig. 5: (a) The cyan region denotes the feasible workspace in
a 2-D illustration. The green point • marks the desired position
for xve(t), while the green cross × indicates the control point
Vi. (b) Two approximated SDFs are shown, each expressed in
piecewise polynomial form.

into the inertial frame {I} through the rotation matrix H1(ψ).
Therefore, xve(t) is expressed in the inertial frame {I}.

As depicted in Fig. 5, the workspace for xve(t) is for-
mulated as the intersection of a sphere and two half-spaces
determined by parallel planes, corresponding to the cyan re-
gion, which is the convex workspace W. To ensure that xve(t)
remains within the workspace, the following cost function is
introduced:

fw =

N−s∑
i=s

Fw(Vi)

=

N−s∑
i=s

1

k
log

(
ekhoFo(Vi) + ekhlFl(Vi)

)
, (16)

where Fo(Vi) and Fl(Vi) denote the approximated SDFs
associated with the sphere and the limiting planes, respectively.
k, hl and ho are three positive parameters that regulate the
smoothness and relative weight of the cost. It is worth noting
that the log-sum-exp term serves as a smooth approximation
of the maximum between hoFo(Vi) and hlFl(Vi). The explicit
definitions of Fo(Vi) and Fl(Vi) are given in the form of
piecewise polynomials as follows:

Fo(Vi) =
bo,1r

2 + ao,1r
3, 0≤r≤rd

bo,2(r−rmax)
2
+ ao,2(r−rmax)

3
, rd≤r≤rmax

(r−rmax)
2
, rmax≤r

(17a)

Fl(Vi) =

(Vi,z+rmax)
2
, Vi,z≤−rmax

bl,1(Vi,z+rmax)
2
+

al,1(Vi,z+rmax)
3
, −rmax≤Vi,z≤−zd

bl,2(Vi,z+rmin)
2
+

al,2(Vi,z+rmin)
3
, −zd≤Vi,z≤−rmin

(Vi,z+rmin)
2
, −rmin≤Vi,z

(17b)

where rmax and rmin are the parameters relevant to the
convex region W. Vi = [Vi,x,Vi,y,Vi,z]

⊤ ∈ R3 denotes the
control point, with Vi,x, Vi,y , and Vi,z denoting its Carte-
sian components. r =

√
V⊤
i Vi is the norm of the vector

Vi. By ensuring that Fo(Vi) and Fl(Vi) are continuously
differentiable and incorporating the given parameters rd, zd,
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and fd, the coefficients ao,j , bo,j , al,j , and bl,j (j = 1, 2)
can be explicitly computed. Moreover, the use of piecewise
polynomials facilitates subsequent trajectory optimization and
gradient computation.

−0.6

−0.4

−0.2

0.0
(a) : =1, ℎ>=1, ℎ; =1 (b) : =2, ℎ>=1.5, ℎ; =0.5 (c) : =2, ℎ>=2, ℎ; =0.1

−0.4 0.0 0.4
−0.6

−0.4

−0.2

0.0
(d) : =10, ℎ>=1, ℎ; =1

−0.4 0.0 0.4

(e) : =2, ℎ>=0.5, ℎ; =1.5

−0.4 0.0 0.4

(f) : =2, ℎ>=0.1, ℎ; =2

Fig. 6: The cyan regions represent the feasible workspace in
a 2-D illustration, while the green areas enclosed by black
curves illustrate the zero-level sets of the smooth soft-max
function. Different parameter choices of k, ho, and hl lead to
distinct shapes of the approximated feasible boundary.

Theorem 2. If the cost Fw(Vi) associated with each control
point is nonpositive, i.e., Fw(Vi) ≤ 0, then xve(t) ∈ W,∀t,
which means that the entire B-spline curve xve(t) is guaran-
teed to lie within the convex workspace W.

Proof. The workspace W, illustrated in Fig. 5, is defined as

W = {x ∈ R3 | Fo(x) ≤ 0, Fl(x) ≤ 0}.

Let F denote the closed set characterized by Fw(x) ≤ 0, i.e.,

F = {x ∈ R3 | Fw(x) ≤ 0}.

By the log-sum-exp inequality and k > 0, which states that
for any a, b ∈ R,

1

k
log(ea + eb) ≤ max(a, b),

it follows that

Fw(x) ≥ max(hoFo(x), hlFl(x)). (18)

If Fw(x) ≤ 0, then (18) implies

max(hoFo(x), hlFl(x)) ≤ 0 ⇒ hoFo(x) ≤ 0, hlFl(x) ≤ 0.

Since ho, hl > 0, and recalling the definitions of Fo(x) and
Fl(x) in (17a) and (17b), it can be concluded that F is a subset
of the workspace W, i.e., F ⊂ W, as illustrated in Fig. 7.

For illustration, consider a case where C1 ⊂ R3 denotes the
interior of a tetrahedron with vertices {V1,V2,V3,V4} and the
corresponding B-spline curve segment xve1(t) is defined over
the time interval [t1, t2]. By the convex hull property of B-
spline curves [33], the trajectory segment satisfies

xve1(t) ∈ C1, t ∈ [t1, t2]. (19)

Moreover, since Fw(Vi) ≤ 0 holds for all control points, it
can be derived that

Vi ∈ F ⊂ W, i = 1, 2, 3, 4, (20)
C1 ⊂ F ⊂ W. (21)

Combining the above two results (19) and (21), it can be
concluded that

xve1(t) ∈ W, t ∈ [t1, t2]. (22)

For each segment of the B-spline curve, the same conclusion
as in (22) holds, i.e., the segment remains confined within the
workspace. Therefore, by concatenating all such segments, it
follows that the entire B-spline curve xve(t) is theoretically
guaranteed to be in the convex workspace W.

�0.6

�0.4

�0.2

0.0
(a) : = 1, ⌘> = 1, ⌘; = 1 (c) : = 5, ⌘> = 1.5, ⌘; = 0.5

�0.6 �0.3 0.0 0.3 0.6
�0.6

�0.4

�0.2

0.0
(b) : = 10, ⌘> = 1, ⌘; = 1

�0.6 �0.3 0.0 0.3 0.6

(d) : = 5, ⌘> = 0.5, ⌘; = 1.5

xve1(t)

xve3(t)
V1

V2

V3

V4

V5

V6

F
W

Fig. 7: The green area representing F is in the cyan area
W. Two segments of the B-spline curve xve1(t) and xve3(t)
are determined by the control points set {V1,V2,V3,V4} and
{V3,V4,V5,V6}, respectively.

B. Smoothness Cost
The smoothness cost is formulated as minimizing the nor-

malization of the acceleration control points. The smoothness
cost is formulated as

fs =

N−s∑
i=s−2

Fs(Vi,Vi+1,Vi+2) =

N−s∑
i=s−2

∥Fs,i∥2 , (23)

where each term corresponds ∥Fs,i∥ 2 to the squared norm of
the acceleration control point, given by

∥Fs,i∥ 2 = ∥miVi +mi+1Vi+1 +mi+2Vi+2∥2 .

Here, the coefficients mi,mi+1,mi+2 are determined by the
non-uniform knot vector T and are expressed as

mi =
s(s− 1)

ti+2,s−1

1

ti+1,s
,

mi+1 =
s(s− 1)

ti+2,s−1

(
− 1

ti+2,s
− 1

ti+1,s

)
,

mi+2 =
s(s− 1)

ti+2,s−1

1

ti+2,s
,

where ti,s denotes the time span from ti to ti+s, i.e., ti,s =
ti+s − ti.

C. Yaw-rate Cost
vi and vi+1 are the projections of the control points Vi and

Vi+1 on the x-y plane, expressed as follows:

vi =

Vi,x

Vi,y

0

 , vi+1 =

Vi+1,x

Vi+1,y

0

 .
ni and ni+1 are the normalized vector of vi and vi+1,
respectively, which means that

ni =


Vi,x√

V2
i,x+V2

i,y
Vi,y√

V2
i,x+V2

i,y

0

 , ni+1 =


Vi+1,x√

V2
i+1,x+V2

i+1,y
Vi+1,y√

V2
i+1,x+V2

i+1,y

0

 .
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Then, the yaw-rate cost is formulated as

fy =

N−s−1∑
i=s

Fy(Vi,Vi+1) =

N−s−1∑
i=s

∥ni+1 − ni∥2. (24)

D. Obstacle-avoidance Cost

The obstacle avoidance cost is defined based on the distance
between the control point Ei and its nearest obstacle, and it is
formulated as

fd =

N−s∑
i=s

Fd(d(Ei)), (25)

where d(Ei) denotes the Euclidean distance from the control
point Ei to the nearest obstacle, which can be effectively
extracted from the ESDF map [34]. The cost function on the
i-th control point Fd(d(Ei)) is as follows:

Fd(d(Ei)) =

{
(d(Ei)− re)

2
, d(Ei) ≤ re

0, d(Ei) > re
(26)

where re is the radius ensuring the safety, given by (12).
The gradients of the above-mentioned cost functions with

respect to the control points are derived in Appendix A.

VI. IMPLEMENTATION AND RESULTS

In order to verify the effectiveness of the proposed method,
the implementation details, simulation results and experimen-
tal results are introduced in this section.

A. Algorithm Implementation and Experiment Setup

1) Algorithm Implementation: The order s of the B-spline
curve is set to 3, and the optimization problem in (15) is solved
using NLopt Library1. The guiding trajectory for the multi-
rotor is generated following the method of Fast-Planner [24].
To remain consistent with the collision model design in Sec-
tion IV-A, the multi-rotor’s maximum acceleration is bounded
to ensure that the resulting tilt angle remains within the
prescribed αmax.

The simulation platform is adapted from Fast-Planner, in-
cluding the multi-rotor dynamics model, random map gen-
erator, and point cloud rendering module. All simulations are
conducted on an Intel Core i7−13700 CPU and GeForce GTX
3070 Ti GPU. To ensure a fair comparison, all computations
are conducted with the same aforementioned computation
capability. In real world experiments, all the state estimation,
mapping and motion planning modules run on an Intel Core
i7−13700 CPU with 16GB RAM.

2) Experiment Setup: The aerial manipulator system con-
sists of an F550 hexrotor and a custom-built robotic arm.
Specifically, the hexrotor is equipped with a Pixhawk FMUv5
flight controller, which connects to the onboard computer via
the Mavlink communication protocol. The flight controller
employs the cascaded P-PID controller incorporating the feed-
forward term from the robotic arm, which is embedded within
the Pixhawk FMUv52. The flight controller powers six pairs

1https://nlopt.readthedocs.io/en/latest/
2https://ardupilot.org/copter/docs/common-cuav-v5plus-overview.html

Intel NUC

Mavlink

Dynamixel SDK

Livox Driver

6
ESC

T-MotorPixhawk FMUv5

Connector

Dynamixel Servo Motor

Livox Mid 360

Fig. 8: Experimental platform.

of T-Motors and 10-inch propellers through the Electronic
Speed Controllers (ESCs). The robotic arm is conducted by
Dynamixel servo motors and a few self-designed connectors.

The Livox Mid 360 LiDAR is mounted on the multi-
rotor and integrated using the Livox Driver3. Fast-lio2 [35]
is employed to estimate the odometry of the multi-rotor and
to generate a dense point cloud map. The state estimation for
the robotic arm is handled by the Dynamixel SDK, while the
end-effector’s position is computed using the robotic arm’s
forward kinematics.

B. Simulation Results

(a) (b) (c)

Fig. 9: Illustration of simulation scenarios.

Since most existing works on motion planning for aerial
manipulators rely on pre-built maps [14]–[20], a direct com-
parison is not feasible in our online planning setting. To
provide a fair comparison, a multi-rotor-only planning is
implemented where the robotic arm remains fixed throughout
the entire trajectory and only the multi-rotor’s motion is
planned, which serves as a reference method. Although it
is not an existing method from the literature, it highlights
the necessity of considering the robotic arm’s motion in the
planning process. In the simulation study, three representative
scenarios are considered, as illustrated in Fig. 9. In each
scenario, the aerial manipulator starts from different initial

3https://github.com/Livox-SDK/Livox-SDK

https://nlopt.readthedocs.io/en/latest/
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(b)

(c)

(a)

referenceproposed

Fig. 10: Multi-rotor’s travel trajectories in different scenarios.

configurations, where both the initial and goal states of the
multi-rotor and the robotic arm are explicitly shown.

TABLE I: Quantitative Comparison.

Method
Travel Trajectory Computation Time (ms)

Length (m) Time (s) multi-rotor robotic arm total

(a)
proposed 42.52 15.79 0.79 0.22 1.01
reference 49.63 22.87 1.73 / 1.73

(b)
proposed 42.58 16.03 1.00 0.21 1.21
reference 44.08 17.72 1.55 / 1.55

(c)
proposed 42.39 15.88 1.05 0.12 1.17
reference 43.82 16.65 1.22 / 1.22

The quantitative results in TABLE I show that the proposed
method consistently achieves shorter trajectory length and
flight time compared to the reference multi-rotor-only method.
This improvement is attributed to the reduced conservatism
when the manipulator’s motion is explicitly considered, rather
than conservatively enclosing the entire aerial manipulator
within a bounding ball. The average computation time for
each planning process is also reported. Although the proposed
method additionally accounts for the robotic arm’s motion, its
overall computation time is lower than that of the reference
method in all scenarios. This is because the reference method
requires planning for the multi-rotor within a more constrained
configuration space, which increases both path searching and
trajectory optimization computation cost.

For the purpose of further exploring the impact of the
proposed method on the computation time of the robotic arm,
we present a detailed boxplot in Fig. 11. The boxplot provides
a detailed illustration of the computation time for the robotic
arm across different scenarios. Even in the most extreme case
for scenario (a), the time remains less than 0.6 ms.

C. Experimental Results

The experiments rely solely on onboard localization and
mapping, without requiring any pre-built maps or external
positioning systems. In this paper, we present two fully
autonomous flight experiments conducted in constrained envi-
ronments, as illustrated in Fig. 12 and Fig. 13.

In Experiment 1, the aerial manipulator successfully plans
a collision-free trajectory for both the multi-rotor and the
end-effector through a ring-shaped obstacle. In Experiment

Scenario (a) Scenario (b) Scenario (c)

0.1

0.2

0.3

0.4

0.5

0.6

co
m

pu
ta

tio
n 

tim
e 

(m
s)

Fig. 11: Distribution of the robotic arm’s computation time
across different scenarios.

2, the aerial manipulator starts behind vertical obstacles, and
it successfully plans a collision-free trajectory that involves
hurdling over horizontal obstacles and navigating through a
ring-shaped obstacle.

To the best of our knowledge, this is the first instance of an
aerial manipulator achieving autonomous flight in constrained
environments without pre-built maps. The experimental results
demonstrate the effectiveness of the proposed method in real-
world applications.

21

Fig. 12: The snapshots and visualization of Experiment 1.

1 2 3

Fig. 13: The snapshots and visualization of Experiment 2.

VII. CONCLUSION

In this paper, we proposed RINGO, a real-time motion plan-
ning method for aerial manipulators in constrained environ-
ments without relying on pre-built maps. The pre-planned and
parameterized trajectory of the multi-rotor serves as a guiding
reference. An initial trajectory for the end-effector is generated
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by a quadratic Bézier curve. Then, the gradient-based opti-
mization method incorporating workspace-feasibility, smooth-
ness, yaw-rate, and obstacle-avoidance costs is utilized to
refine the trajectory of the end-effector. By jointly consid-
ering the multi-rotor and the robotic arm, RINGO reduces
unnecessary conservatism in trajectory planning and achieves
high real-time performance required for locomotion tasks.
The incorporation of a simplified obstacle-avoidance model
and theoretically guaranteed workspace-feasibility constraints
enables the system to generate smooth and geometrically valid
trajectories in real time. Simulation and experimental results
validated that the proposed method can efficiently generate
collision-free and workspace-feasible trajectories in real time.

APPENDIX A
THE GRADIENT OF THE COST FUNCTION

The workspace-feasibility, smoothness, and yaw-rate are
relevant to the control points V . Owing to the derivation in (5),
the gradient of them with respect to Ei is derived as

∂fw
∂Ei

=
∂fw
∂Vi

∂Vi

∂Ei
=
∂fw
∂Vi

,

∂fs
∂Ei

=
∂fs
∂Vi

∂Vi

∂Ei
=
∂fs
∂Vi

,

∂fy
∂Ei

=
∂fy
∂Vi

∂Vi

∂Ei
=
∂fy
∂Vi

.

A. Workspace-feasibility cost

The gradient of the workspace-feasibility cost with respect
to the control point Vi is expressed as

∂fw
∂Vi

=
hoe

hokFo(Vi)

ehokFo(Vi) + ehlkFl(Vi)

∂Fo(Vi)

∂Vi

+
hle

hlkFl(Vi)

ehokFo(Vi) + ehlkFl(Vi)

∂Fl(Vi)

∂Vi
.

The gradient of r with respect to Vi is obtained as

∂r2

∂r
· ∂r
∂Vi

= 2r · ∂r
∂Vi

= 2Vi ⇒ ∂r

∂Vi
=

Vi

r
.

The gradient of Fo(Vi) with respect to Vi is given by

∂Fo(Vi)

∂Vi
=
∂Fo(Vi)

∂r

∂r

∂Vi
=
∂Fo(Vi)

∂r

Vi

r
.

∂Fo(Vi)

∂r
=

2bo,1r + 3ao,1r
2, 0 ≤ r ≤ rd

2bo,2(r−rmax) + 3ao,2(r−rmax)
2
, rd ≤ r ≤ rmax

2(r−rmax). rmax ≤ r

The gradient of the line cost Fl(Vi) is calculated as
∂Fl(Vi)

∂Vi
=

[
0 0 ∂Fl(Vi)

∂Vi,z

]⊤
.

∂Fl(Vi)

∂Vi,z
=

2(Vi,z+rmax), −rmax ≤ Vi,z,

2bl,1(Vi,z+rmax)+

3al,1(Vi,z+rmax)
2
, −rmax ≤ Vi,z ≤ −zd

2bl,2(Vi,z+rmin)+

3al,2(Vi,z+rmin)
2
, −zd ≤ Vi,z ≤ −rmin

2(Vi,z+rmin). −rmin ≤ Vi,z

B. Smoothness cost
The gradient of the smoothness cost fs with respect to the

control point Vi is calculated as

∂fs
∂Vi

=

(
2F⊤

s,i

∂Fs,i

∂Vi

)⊤

+

(
2F⊤

s,i−1

∂Fs,i−1

∂Vi

)⊤

+

(
2F⊤

s,i−2

∂Fs,i−2

∂Vi

)⊤

= 2

(
∂Fs,i

∂Vi

)⊤

Fs,i + 2

(
∂Fs,i−1

∂Vi

)⊤

Fs,i−1

+ 2

(
∂Fs,i−2

∂Vi

)⊤

Fs,i−2.

= 2mi,0Fs,i + 2mi−1,1Fs,i−1 + 2mi−2,2Fs,i−2.

C. Yaw-rate cost
The gradient of the yaw-rate cost fy with respect to the

control point Vi is given as
∂fy
∂Vi

=
∂Fy(Vi−1,Vi)

∂Vi−1
+
∂Fy(Vi−1,Vi)

∂Vi

=

(
∂ni

∂Vi

)⊤

2(ni − ni−1)−
(
∂ni

∂Vi

)⊤

2(ni+1 − ni)

=

(
∂ni

∂Vi

)⊤

2(ni − ni−1 − ni+1 + ni),

where,

∂ni

∂Vi
=


∂ni,x

∂Vi,x

∂ni,x

∂Vi,y
0

∂ni,y

∂Vi,x

∂ni,y

∂Vi,y
0

0 0 0



=


V2

i,y

(V2
i,x+V2

i,y)
3
2

−Vi,xVi,y

(V2
i,x+V2

i,y)
3
2

0

−Vi,xVi,y

(V2
i,x+V2

i,y)
3
2

V2
i,x

(V2
i,x+V2

i,y)
3
2

0

0 0 0

 =

(
∂ni

∂Vi

)⊤

.

D. Obstacle-avoidance cost
The gradient of the obstacle avoidance cost fd with respect

to Ei is calculated as

fd
∂Ei

=

{
2 (d(Ei)− re)

∂d(Ei)
∂Ei

, d(Ei) ≤ re

0, d(Ei) > re

where the gradient of the distance d(Ei) with respect to the
control point Ei can be obtained in the ESDF map [34] directly.
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